Приложение 2 к РПД Математика 44.03.05 Педагогическое образование (с двумя профилями подготовки) направленность (профили) Биология. География Форма обучения — очная Год набора — 2022

ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

1. Общие сведения

`	общие въедении					
1.	Кафедра	Математики, физики и информационных технологий				
2. Направление подготовки		44.03.05 Педагогическое образование (с двумя профилями				
۷.	Направление подготовки	подготовки)				
3.	Направленность (профили)	Биология. География				
4.	Дисциплина (модуль)	Б1.О.03.01 Математика				
5.	Форма обучения	очная				
6.	Год набора	2022				

2. Перечень компетенций

ОПК-8: Способен осуществлять педагогическую деятельность на основе специальных научных знаний

3. Критерии и показатели оценивания компетенций на различных этапах их формирования

Этап формирования	Формируемая	Кри	Критерии и показатели оценивания компетенций							
компетенции (разделы, темы дисциплины)	компетенция	Знать:	Уметь:	Владеть:	сформированност и компетенций					
Элементы линейной алгебры	ОПК-8	фундаментальные основы математики;основы математических знаний, необходимые	 решать задачи по всем разделам курса, применять теоретический материал; вычислять пределы, находить производные и вычислять 	современными знаниями о математическом анализе и его приложениях; аппаратом						
Введение в математический анализ	ОПК-8	для решения профессиональных задач; — методы математического	интегралы; интегралы; используя определения, проводить исследования, связанные с основными понятиями; применять методы	математического анализа; – методами доказательства утверждений;	Активность на занятиях Выполнение					
Элементы дифференциального исчисления	ОПК-8	анализа и моделирования; возможные сферы их связи и приложения в других областях математического	математического анализа к доказательству теорем и решению задач; использовать математический аппарат для обработки технической и педагогической информации и	 методами и приемами решения практических задач и доказательства утверждений; методами построения математических 	домашних заданий Контрольная работа Итоговый тест					
Элементы интегрального исчисления	ОПК-8	знания и дисциплинах естественнонаучного содержания; - основные определения, теоремы; - методы решения задач	анализа данных; — строить устную и письменную речь логически верно; — доказывать утверждения математического анализа; — уметь применять полученные навыки в других областях математического знания и дисциплинах естественнонаучного содержания	моделей типовых профессиональных задач; — способностью к обобщению, анализу, постановке цели и выбору путей ее достижения	Выполнение индивидуальных заданий					

Шкала оценивания в рамках балльно-рейтинговой системы: «неудовлетворительно» — 60 баллов и менее; «удовлетворительно» — 61-80 баллов; «хорошо» — 81-90 баллов; «отлично» — 91-100 баллов

4. Критерии и шкалы оценивания

1. Активность на занятиях

Процент правильных ответов	До 60	61-80	81-90	91-100
Количество баллов за активность на занятии	0	0,3	0,4	0,5

2. Выполнение домашних заданий

Процент правильных ответов	До 60	61-80	81-90	91-100
Количество баллов за выполненное домашнее задание	0,2	0,5	0,8	1

3. Выполнение контрольной работы

Процент правильных ответов	До 60	61-80	81-90	91-100
Количество баллов за выполнение контрольной работы	5	10	15	20

4. Выполнение теста

Процент правильных ответов	До 60	61-80	81-90	91-100
Количество баллов за выполненный тест	менее 7	8-10	11-13	14-15

5. Выполнение индивидуальных заданий

Процент правильных ответов	До 60	61-80	81-90	91-100
Количество баллов за выполненное индивидуальное задание	0,2	0,5	0,8	1

- 6. Типовые контрольные задания и методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы
- 6.1. Типовое контрольное задание (контрольная работа, тест, кейс-задание и пр.)

Контрольная работа

- 1. Решить систему методом Гаусса.
- 2. При помощи формул Крамера найти решение системы $\begin{cases} x_1 x_2 x_3 = 2 \\ -2x_1 + x_2 + 5x_3 = 6 \\ 3x_1 4x_2 6x_3 = -2 \end{cases}$
- 3. Вычислить определитель: $\begin{vmatrix} 1 & O & 1 & -1 \\ O & O & 1 & 1 \\ 1 & O & -1 & O \\ -1 & 1 & O & 1 \end{vmatrix}$ разложив его по элементам какой-то строки или какого-то столбца.
- 4. Найти ранг матрицы $\begin{pmatrix} 1 & 2 & 1 & 3 & 4 \\ 3 & 4 & 2 & 6 & 8 \\ 1 & 2 & 1 & 3 & 4 \end{pmatrix}.$
- 5. Решить с помощью обратной матрицы систему

Ключ к заданиям контрольной работы

№ задания	1	2	3	4	5
Правильный	(1.2.3.4)	$(4 \cdot -1 \cdot 3)$	3	2	(1.2.3)
ответ	(1, 2, 3, 1)	(', ', ', ',	<i>J</i>		(1, 2, 3)

5.2. Тест

- 1. Дана функция $y = \sqrt{\frac{5-x}{x-2}}$. Тогда ее областью определения является множество... 1) $\left(-\infty;2\right) \cup \left[\,2;5\right)$, 2) $\left(\,2;5\right)$, 3) $\left(-\infty;2\right) \cup \left[\,5;+\infty\right)$, 4) $\left(\,2;5\right]$.
- 2. Числовая последовательность задана рекуррентным соотношением $a_{n+1} = 2a_n 5$, $a_1 = 3$. Тогда a_4 равно ...

1) 1; 2)
$$-3$$
; 3) -4 ; 4) -11 .

3. Предел числовой последовательности $a_n = \frac{7 + 5n - 3n^2}{12 - 8n^2}$ равен	
1) 1; 2) $\frac{3}{8}$; 3) $-\frac{3}{8}$; 4) $\frac{7}{12}$.	
4. Значение предела $\lim_{x\to 1} \frac{x^2-1}{x-1}$ равно 1) 2; 2) $\frac{1}{2}$; 3) 0;	4) 1.
5-x	

5. Количество точек разрыва функции
$$f(x) = \frac{5-x}{(x^2+x+1)(x^2-16)}$$
, равно ...

6. Наклонная асимптота графика функции
$$y = \frac{2x^2 + 1}{x - 3}$$
 задается уравнением вида...

1)
$$y = 2x + 6$$
; 2) $y = 2x - 6$; 3) $y = 6x + 2$; 4) $y = -6x + 2$.

7. Производная функции
$$y = e^x \cos x$$
 равна...

1)
$$e^x \sin x$$
; 2) $e^x (\cos x - \sin x)$; 3) $e^x (\cos x + \sin x)$; 4) $-e^x \sin x$.

8. Касательная к графику функции
$$f(x) = 2x - x^2$$
 в его точке с абсциссой $x_0 = 1,5$ образует с положительным направлением оси OX угол, равный ...

1)
$$arctg0,75$$
; 2) $\pi - arctg0,75$; 3) $\frac{3\pi}{4}$; 4) $\frac{\pi}{4}$.

9. Производная третьего порядка функции
$$y = e^{3x-1}$$
 равна ...

1)
$$9e^{3x-1}$$
; 2) $3e^{3x-1}$; 3) $27e^{3x-1}$; 4) $6e^{3x-1}$.

10. Материальная точка движется прямолинейно по закону
$$x(t) = \frac{1}{3}t^3 - 3t^2 + 12t + 3$$
. Тогда скорость точки в момент времени $t = 3$ равна ...

11. Неопределенный интеграл
$$\int 3^{x} \left(1 - \frac{3^{-x}}{1 + x^{2}}\right) dx$$
 равен ...

1)
$$3^{x} \ln 3 - arctgx + C$$
; 2) $arctgx + C$; 3) $\frac{3^{x}}{\ln 3} + C$; 4) $\frac{3^{x}}{\ln 3} - arctgx + C$

12. Множество первообразных функции
$$f(x) = e^{4-3x^2}x$$
 имеет вид ...

1)
$$-\frac{1}{6}e^{4-3x^2} + C$$
; 2) $\frac{1}{6}e^{4-3x^2} + C$; 3) $-3e^{4-3x^2} + C$; 4) $4e^{4-3x^2} + C$...

13. Определенный интеграл
$$\int_{1}^{0.5} \frac{dx}{1+4x^2}$$
 равен ...

1)
$$\frac{1}{2}$$
; 2) $\frac{\pi}{8}$; 3) $\frac{\pi}{4}$; 4) $\frac{\pi}{2}$.

14. Определенный интеграл
$$\int_{-3}^{3} \frac{\sin x}{\sqrt{4+x^2}} dx$$
 равен ...

1)
$$\sqrt{3}$$
; 2) $\frac{\sqrt{3}}{2}$; 3) 4; 4) 0.

15. Площадь фигуры, ограниченной параболой
$$y = -x^2 + 3x$$
 и осью OX , равна ...

1)
$$\frac{45}{2}$$
; 2) 7,75; 3) $\frac{9}{2}$; 4) 9.

Ключ к заданиям теста

№ задания	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Правильный	4	1	2	1	3	1	2	3	3	2	4	1	2	4	3
ответ	"	"		1]	1		3]		_	1		7	

5.3. Типовая домашняя работа

- 2. Пусть $A = \begin{pmatrix} 3 & 2 \\ 5 & 7 \\ 0 & 3 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 \\ -1 & 2 \end{pmatrix}$; Найти произведение матриц.

Ключ

№ задания	1	2	3
Правильный ответ	2	$ \begin{pmatrix} -2 & 7 \\ -7 & 19 \\ -3 & 6 \end{pmatrix} $	(1; 2; 3)

5.4. Типовое индивидуальное задание

1. Найти предел
$$\lim_{x \to 2} \frac{x^2 - 6x + 8}{x^2 - 8x + 12}.$$

Для нахождения этого предела разложим на множители числитель и знаменатель данной дроби.

$$x^2 - 6x + 8 = 0;$$
 $x^2 - 8x + 12 = 0;$ $D = 36 - 32 = 4;$ $D = 64 - 48 = 16;$ $x_1 = (6 + 2)/2 = 4;$ $x_2 = (6 - 2)/2 = 2;$ $x_2 = (8 - 4)/2 = 2;$ Тогда $\lim_{x \to 2} \frac{(x - 2)(x - 4)}{(x - 2)(x - 6)} = \lim_{x \to 2} \frac{x - 4}{x - 6} = \frac{2}{4} = \frac{1}{2}$

2. Найти предел
$$\lim_{x\to 0} \frac{\sqrt{1+x+x^2}-\sqrt{1-x+x^2}}{x^2-x}$$

Домножим числитель и знаменатель дроби на сопряженное выражение:

$$\lim_{x \to 0} \frac{1 + x + x^2 - 1 + x - x^2}{x(x - 1)(\sqrt{1 + x + x^2} + \sqrt{1 - x + x^2})} = \lim_{x \to 0} \frac{2x}{x(x - 1)(\sqrt{1 + x + x^2} + \sqrt{1 - x + x^2})} = \frac{2}{-1 \cdot (1 + 1)} = -1.$$

3. Найти предел $\lim_{x\to 3} \frac{x^2 - 5x + 6}{x^2 - 9}$

$$\lim_{x \to 3} \frac{x^2 - 5x + 6}{x^2 - 9} = \left\{ x^2 - 5x + 6 = (x - 2)(x - 3) \right\} = \lim_{x \to 3} \frac{(x - 2)(x - 3)}{(x - 3)(x + 3)} = \frac{3 - 2}{3 + 3} = \frac{1}{6}$$

4. Вычислить предел функции.

$$\lim_{x \to -3} \frac{(x^2 + 2x - 3)^2}{x^3 + 4x^2 + 3x} = \left(\frac{0}{0}\right) = \lim_{x \to -3} \frac{(x - 1)^2 (x + 3)^2}{x(x + 1)(x + 3)} = \lim_{x \to -3} \frac{(x - 1)^2 (x + 3)}{x(x + 1)} = 0.$$

5. Вычислить предел функции.

$$\lim_{x \to 16} \frac{\sqrt[4]{x} - 2}{\sqrt{x} - 4} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \lim_{x \to 16} \frac{(\sqrt[4]{x} - 2)(\sqrt[4]{x} + 2)}{(\sqrt{x} - 4)(\sqrt[4]{x} + 2)} = \lim_{x \to 16} \frac{\sqrt{x} - 4}{(\sqrt{x} - 4)(\sqrt[4]{x} + 2)} = \lim_{x \to 16} \frac{1}{\sqrt[4]{x} + 2} = \frac{1}{4}.$$

6. Найти асимптоты графика функции $y = \frac{9x}{9 - x^2}$.

Прямые x = 3 и x = -3 являются вертикальными асимптотами кривой.

Наклонные асимптоты:
$$k = \lim_{x \to \infty} \frac{9}{9 - x^2} = 0$$
, $b = \lim_{x \to \infty} \frac{9x}{9 - x^2} = \lim_{x \to \infty} \frac{\frac{9}{x}}{\frac{9}{x^2} - 1} = 0$

5.4. Вопросы к экзамену

- 1. Определение матрицы. Виды матриц.
- 2. Операции над матрицами.
- 3. Обратимые матрицы. Вычисление обратной матрицы. Условия обратимости матриц.
- 4. Определитель матрицы. Основные свойства определителей.
- 5. Решение систем линейных уравнений методом Гаусса.
- 6. Решение систем линейных уравнений методом Крамера.

 $y = kx + b = 0 \cdot x + 0$, y = 0 – горизонтальная асимптота.

- 7. Решение систем линейных уравнений матричным методом.
- 8. Понятие функции. Способы задания функции.
- 9. Предел числовой последовательности. Теоремы о пределах числовых последовательностей.
- 10. Предел функции, геометрический смысл предела функции.
- 11. Односторонние пределы.
- 12. Бесконечно малые и бесконечно большие функции. Эквивалентные бесконечно малые функции. Таблица эквивалентных бесконечно малых функций.
- 13. Непрерывность функции. Классификация точек разрыва функции. Теоремы о непрерывных функциях.
- 14. Определение производной. Правила дифференцирования.
- 15. Таблица производных основных элементарных функций.
- 16. Возрастание и убывание функций (необходимое и достаточное условия монотонности функции).
- 17. Экстремум функции (необходимое и достаточное условия экстремума функции).
- 18. Схема исследования функции на экстремум.
- 19. Выпуклость графика функции. Точки перегиба.
- 20. Асимптоты графика функции.
- 21. Первообразная и неопределенный интеграл.
- 22. Основные свойства неопределенного интеграла. Таблица основных неопределенных интегралов.
- 23. Определенный интеграл. Приложения определенного интеграла.
- 24. Вычисление площади криволинейной трапеции.